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Abstract. A Monte Carlo analysis of terminally attached hard sphere sequences of N G 24 
segments in the vicinity of a rigid plane is presented. The principal configurational 
properties of the system are determined, in particular the segment density distribution 
p ( z (  N )  normal to the boundary, the mean square end-to-end length (R:,,,), the mean square 
radius of gyration (Si ! )  and the mean thickness of the adsorbed layer (z,,,.). Comparisons 
with a previously presented iterative convolution analysis are made and the existence of 
a density discontinuity in p ( r l N )  is confirmed. Exponent representations of the data 
suggest - ( N  - l)y with y - 1.2, consistent with lattice-based analyses. The boundary 
configurations are resolved into loop, train and tail components and their dependence 
upon chain length determined. Good agreement with the convolution analysis is found, 
the results being consistent with earlier analyses by Roe and Chan et al, and the experimental 
investigations of Cosgrove er al. 

1. Introduction 

Analyses of chain conformations in the vicinity of a rigid boundary have generally 
been restricted to lattice-based investigations in which partial account is taken of 
excluded volume processes in finite sequences. Earlier work based on random lattice 
walk models does not concern us here; these results have been reviewed by Barber 
and Ninham (1970). 

The lattice-based analyses may be further resolved into exact enumeration studies 
(Lax 1974, Mark and Windwer 1974, Whittington 1975, Middlemiss and Whittington 
1976, Torrie et al 1976, Guttmann et a1 1978, Hammersley et al 1982) and Monte 
Carlo estimates based on self-avoiding lattice walks (Clark and La1 1978, 1981, Dick- 
inson and La1 1980); comparative discussion of some of these results will be given below. 

In addition, a variety of continuum analyses have been proposed with partial or 
complete neglect of excluded volume processes operating within the sequence (Forsman 
and Hughes 1963, Edwards 1965, Silberberg 1967, de Gennes 1969, Chan et al 1975). 
It is not appropriate to review these treatments here; instead we refer the reader to 
Dickinson and La1 (1980) for an appraisal. In all cases the preoccupation is with the 
asymptotic properties of the sequences as the number of steps N+m. Despite the 
importance of the problem in the description of a wide range of systems ranging from 
biological cell boundary phenomena to colloidal stability against flocculation, relatively 
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little interest has been shown in the configurational properties of finite self-avoiding 
continuum sequences in the vicinity of a rigid boundary. An analysis by the present 
author based on a convolution integral technique has been previously reported (Croxton 
1981, 19831, although in the absence of any extensive Monte Carlo analysis of the 
problem with which to compare the results. In these convolution estimates the effect 
of a rigid plane was introduced by allowing the diameter of the first segment o o + ~ ~ ,  
whilst for the remaining sequence o1,. . . , uN = 1 was adopted. It was found that the 
configurational properties of the chain rapidly approached an asymptotic form with 
increasing go, and in practice vo = 64 was assumed. The Monte Carlo estimates, on 
the other hand, were determined for a terminally attached sequence U , ,  . . . , olv = 1 at 
a rigid plane; the discrepancy between the curvilinear and the Cartesian volume elements 
in the two models is negligible for the sequence lengths investigated here. Accordingly 
we regard r,, and z, as equivalent representations of the normal separation of segment 
i from the rigid boundary. 

Certainly exact enumeration studies are available, and whilst useful, the inherent 
‘coarse-grained’ nature of the lattice in which the sequence is embedded prohibits 
immediate comparison with any continuum analysis. Indeed, some aspects of the 
lattice distribution are inevitably unresolved; a case in point concerns the hard sphere 
segment density distribution p(  z /  N)  normal to the boundary for a terminally attached 
sequence. On the basis of the convolution approximation, p ( z l N )  should show a 
pronounced discontinuity at a distance of one segment diameter from the boundary 
with a weakly resolved secondary structure associated with geometric layering of the 
segments (Croxton 1985) whilst the lattice-based distribution is essentially structureless. 
Recent Monte Carlo calculations for strongly adsorbed perfectly flexible self-avoiding 
sequences have been reported by Higuchi et a1 (1983). Where appropriate we shall 
make reference to these results, although direct comparison cannot be made with the 
present analysis which relates to zero chain-plane attraction. 

In  this paper we present a Monte Carlo analysis of perfectly flexible self-avoiding 
hard sphere sequences terminally attached to a rigid plane. In particular, the segment 
density distributions p ( z l N )  normal to the plane are determined for Ns24,  as are 
the mean and mean square segment-segment and segment-boundary separations. 
Whilst adsorption as such does not occur in this system, the mean thickness of the 
boundary layer of polymer segments, the normal location of the centre of gravity and 
the radius of gyration of the sequence are determined. Finally, a detailed analysis of 
the development of specific structures (loops, trains and tails) at the boundary is 
presented; in all cases the N dependence of these quantities is investigated. 

2. The Monte Carlo analysis 

The geometry of the system is shown in figure 1. A perfectly flexible hard sphere 
sequence of identical segments diameter cr = 1 is terminally attached to a rigid planar 
boundary. We identify the accessible boundary which represents the locus of closest 
approach of any segment centre to tLe rigid boundary. !t is with respect to this 
boundary that we measure normal sepdration z in units of a 

The centre of the N t h  hard sphere segment is distributed uniformly over the 
accessible spherical surface = cr, any attrition in the accessible area being due 
to the presence of the rigid boundary or interference with non-adjacent segments within 



A Monte Carlo analysis of terminally attached polymer sequences 989 

Accessible 
boundary 

--c - <  
Contact 
z o r e  

Figure 1. Geometry of terminally attached sequence. The accessible boundary represents 
the locus of closest approach of the hard sphere segments to the rigid plane. The contact 
zone [ is also indicated. Segment N is distributed uniformly over the accessible spherical 
surface defined by r , + , , * ,  subject to geometrical interference. 

the sequence. The centre of the terminally attached segment is located at (0 ,  0,O). The 
correct procedure for locating the Nth  segment (Knuth 1969) involves the independent 
selection of x, y ,  z coordinates relative to the centre of the ( N  - 1)th segment normally 
distributed over the interval (-1, l ) ,  whereupon 

giving the location of the N t h  segment ( x ' ,  y ' ,  z ' )  where 

x ' = x I r  y ' = y l r  z' = z /  r. 

This procedure ensures that the Nth  segment is uniformly distributed over the accessible 
surface of the ( N  - 1)th. Provided there is no violation of the excluded volume 
condition in the system the sequence of N segments is considered an acceptable 
configuration from the point of view of compilation of statistics. If  a violation does 
occur, then the entire sequence is rejected; nevertheless, the statistics of the 'successful' 
sequence of N - 1 segments must of course be retained. Repeated attempts to 'success- 
fully' extend the N - 1 sequence is essentially incorrect since it asserts that the distribu- 
tion of the earlier segments are unmodified by the presence of subsequent extensions 
of the chain, which of course they are. 

It is also incorrect to select the ( x ,  y ,  z )  coordinates uniformly over the interval 
(-1, 1) .  Points uniformly distribkted in three-dimensional Euclidian space are no1 
uniformlq distributed in the two-dimensional curved space defined by r N - , , N ,  
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Naturally many more shorter sequences will be successfully generated than longer 
ones, and we find the number of successful sequences range as follows: 

Number of successful 
N configurations 

2 334 355 290 
5 78 719 290 

10 8 815 913 
15 1 052 673 
20 129 912 
24 24 773 

Obviously the statistical averages determined are better defined for the shorter 
sequences. Nevertheless, a good quantitative description is obtained over the entire 
range of sequences investigated. 

3. Results 

3.1. Segment density distributions 

In figure 2 we present the normalised MC segment density distribution p ( z l N )  for a 
terminally attached sequence of 15 hard sphere segments in the vicinity of a rigid 

Figure 2. Comparison of the Monte Carlo segment distribution p(zI15) with the c and IC 
estimates. The IC distribution is seen to be in better overall agreement with the Monte 
Carlo data, but substantially over-estimates the chain-plane contact probability. The c 
approximation conversely under-estimates the contact probability and over-estimates the 
distribution in the vicinity of the discontinuity. -, IC, - - -, C ;  . . . , Monte Carlo after 
1052 673 configurations. 
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plane. The normal distance z is measured in units of the segment diameter from the 
plane z = 0, coinciding with the accessible boundary (figure 1). 

The existence of a discontinuity in p ( z l N )  at z =  1, first predicted on the basis of 
the convolution approximation (Croxton 1981, 1983, 1985) is confirmed by the Monte 
Carlo results for the entire range of N investigated. The amplitude of the discontinuity 
Ap decreases slightly with increasing N but is of the order of -1.25 throughout. 

In all cases the discontinuity is preceded by a steep rise in p ( z l N )  (0< z < l ) ,  and 
for N > 8 is followed by a maximum ( z  > 1) corresponding to a weakly resolved second 
layer and for longer simulated sequences ( N  2 1 l ) ,  evidence of a third layer. All these 
features have been previously predicted (Croxton 1981, 1983) and differ substantially 
from distributions based on a priori considerations and from lattice-based analyses, 
both of which suggest an essentially structureless distribution (Dickinson and La1 
1980). It is appropriate to note that the continuum (off-lattice) Monte Carlo computa- 
tions of Higuchi et a1 (1983) also show no evidence of a discontinuity in the segment 
density profile. However, as we observed in a previous publication (Croxton 1983), 
in the case of strong chain-plane attraction p ( z l N )  is collapsed towards the boundary 
and the discontinuity, whilst still present, is nevertheless absorbed into the principal 
maximum. Higuchi’s analysis for strongly adsorbed sequences does not resolve a 
discontinuity in p ( z l N )  for such systems and confirms the qualitative form of the 
distributions reported earlier (Croxton 1983). It should be emphasised, however, that 
the geometrical processes responsible for the discontinuity continue to operate. 

For the purposes of comparison the results of a more recent iterative convolution 
(IC) approximation (Croxton 1984) are shown (figure 2); the IC technique is seen to 
predict the structure semi-quantitatively, although the somewhat over-collapsed nature 
of the approximation is apparent. More particularly, the IC approximation appears 
to suggest a more highly structured distribution than is evident from the MC simulations, 
although more extended runs may resolve this structure. The principal discontinuity 
at z = 1 is clearly confirmed, however. 

The highly structured nature of the hard sphere I C  distributions may be directly 
attributed to the form of the component distributions Z (  z, IN) 

N 

p ( z l N ) =  c Z(z1lN) 
1=2 

where Z( z,I N )  represents the normalised spatial probability distribution of the ith 
segment within the N-mer normal to the accessible boundary. We find for 2 < i s  5 ,  
the Z(z , IN)  indicate that the ith segment is strongly expelled from the vicinity of the 
boundary-a direct consequence of the ‘entropic repulsion’ (Silberberg 1967, Croxton 
1983) associated with the reduction in accessible chain conformations by the presence 
of the boundary. As a result the component distributions Z(z , iN)  for small i are 
distorted into a saw-tooth form, with the maximum displaced towards the end of the 
range (Z?””-(i-  1)c~) .  The saw-tooth form of Z(z , lN)  relaxes with increasing i, 
though it is nonetheless responsible for the short-range serrations in p(z1N).  Now, 
whilst these serrations are not clearly resolved in the MC data, the IC calculations 
nonetheless identify the agent responsible for the fine structure in the simulated density 
distributions. 

It is appropriate here to make a detailed comparison ofthe convolution (c) (Croxton 
1983) and iterative convolution (IC) (Croxton 1984) estimates of the segment density 
distributions normal to the boundary in the context of the Monte Carlo data reported 
here. In particular we observe that the overall agreement with the MC distribution is 
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better for the IC approximation (figure 2); specifically, the density discontinuity, the 
secondary maximum and the tail structure are better represented. However, the contact 
density at the boundary, corresponding to adsorbed sequences, is substantially over- 
estimated in the IC approximation with respect to the MC distribution. This represents 
the primary distinction between the c and IC estimates, the former approximation 
substantially under-estimating the adsorbed component (Croxton 1983, figure 2). Both 
approximations are known to yield over-collapsed distributions; IC appears to identify 
these near-boundary configurations primarily as trains, whilst c identifies them as loops. 

3.2. Mean square end-to-end distance 

The mean square separation of the terminally attached and terminal segments ( R : N )  
was determined, and the results are shown in figure 3. For comparison the Monte 

I 
0 5 10 15 20 

Number o f  hnks 

Figure 3. The mean square end-to-end separation ( R : N )  and radius of gyration (SL.) on 
the basis of the M C  and IC analyses. The isolated chain counterparts are shown for 
comparison. -, IC (terminally attached); -.-, IC (isolated); - - -, MC (terminally 
attached); - -, MC (isolated). 
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Carlo results for an isolated, but otherwise identical, sequence are shown. The confined 
sequence is consistently expanded with respect to its isolated counterpart, as might be 
expected from the reduction in accessible volume due to the boundary. However, 
there is no reason to presuppose that the mean segment densities of the terminally 
attached and isolated sequences should be identical; it is not a foregone conclusion 
therefore that ( R ; N )  should necessarily be greater than its isolated counterpart, although 
Mark and Windwer (1974) have suggested that such would be the ,case for walks 
restricted to the half-space. 

( R t N )  calculated on the basis of the iterative convolution ( I C )  approximation for 
a terminally attached sequence is also shown, together with the corresponding results 
for an isolated sequence. The relative expansion of the terminally attached sequence 
is clearly illustrated, and is seen to be in good agreement with the Monte Carlo estimate. 
The error bars in figure 3 indicate the 95% confidence interval. 

We have also estimated the mean square length exponent y in the relation 

( R i ) -  n y  

where n = N - 1 .  We form the estimate on the basis (Whittington 1975) 

Yn = i n ( ( R 2 , + * ) l ( m - l )  ( l a )  
and these are shown in figure 4. A least squares quadratic fit to the data suggests a 
limiting value ym - 1.20 which concurs with the exact enumeration results of Whitting- 
ton (1975) (ym- 1.2) and Guttmann et a1 (1978) (1.19< ycc< 1.22) determined on a 
variety of lattices. It should be emphasised that in off-lattice Monte Carlo studies, 
unlike their lattice-based exact enumeration counterparts, the yn are subject to statistical 
error. To place error estimates upon the yn would require numerous re-runs of the 
entire simulation, which would, of course, be computationally prohibitive. Any conven- 
tional specification of error associated either with the yn or the estimate of ym is 
therefore impossible on the basis of the present data set. 

Lax (1974) had previously asserted that in the absence of a soft chain-plane 
interaction, y retains its isolated chain value ( yiso = 1.20); our result appears fully 
consistent with Lax’s assertion and contradicts the claim of Mark and Windwer (1974) 
that the exponent should increase when the walk is restricted to the half-space z > 0. 

3.3. Radius of gyration 

The mean square radius of gyration of the chain was determined on the basis of the 
expression 

( S S )  = C 2 R2(  ij IN)/  N (  N - 1 )  
I J  

and the results are shown in figure 3. Assuming a chain length dependence of the form 

( ~ 2 , )  - n y c  

rX = ;((st+,)/(si> - 1 ) .  

we estimate the exponent on the basis of 

(1b) 
It is apparent from figure 4 that the radius of gyration and mean square length exponents 
yX and yn appear to be converging with increasing chain length. Whilst earlier analyses 
on isolated chains suggest that the mean square length and gyration exponents may 
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Figure 4. ( a )  Exponent estimates y,, and y: for the mean square chain length and radius 
of gyration as a function of inverse chain length. ( b )  Loop, train, tail and mean thickness 
exponents as a function of inverse chain length. 

be identical, we cannot yet draw the same conclusion for terminally attached sequences. 
An estimate formed on the basis of a least squares fit to the MC data suggests -yZ> 1.2; 
we emphasise however the reservations which must be placed upon such an estimate, 
as discussed above. Nevertheless, this value is consistent with the proposition ym = 72. 

3.4. Development of loops, trains and tails 

The configuration of the terminally attached sequence at the boundary may be resolved 
into three distinct classes: loops, trains and tails (figure 5 ) .  The precise classification 

Terminaliy 
attached 

Accessible t segment 

Figure 5. Resolution of chain conformation into loop, train and tail components. 
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depends upon the width of the contact zone 5 (Higuchi et a1 1983). Segments whose z 
coordinates are within 5 of the accessible boundary surface are classified as being 
adsorbed, and as such constitute a train. Segments whose centres z >  5 form either 
loops or tails, depending whether one or more of the subsequent centres of the desorbed 
sequence do or do not return to within 5 of the accessible plane. Clearly the partitioning 
of the sequence into loops, trains and tails depends sensitively upon the ratio 5/u, 
particularly since the segment density distribution p ( z l N )  varies rapidly in the vicinity 
of the boundary (figure 2). Accordingly, we present results for two choices of 5. 

The presence of a rigid boundary substantially reduces the number of accessible 
chain conformations with respect to its isolated counterpart. Indeed, the associated 
rise in boundary excess free energy in the vicinity of the plane may be regarded as an 
entropic repulsion between segments and boundary (Middlemiss et a1 1977, Croxton 
1983). This provides a particularly useful concept in the analysis of loop, train and 
tail formation. 

In table 1 we present the number/size distribution of loops, trains and tails for a 
terminally attached hard sphere sequence of 16 segments (691 654 successful configur- 
ations; 5 = 0.0078~) .  These results are typical of all sequence lengths investigated in 
the range 2 s  N 6 2 4 .  

Table 1. Numbers and sizes of loops, trains and tails for N = 16 (691 654 successful 
configurations; 5 = 0 . 0 0 7 8 ~ ) .  

Size Loops Trains Tails 

1 0 3100  130 
2 819 0 108 
3 434 0 85 
4 250 0 99 
5 177 0 83 
6 123 0 100 
7 129 0 83 
8 79 0 128 
9 104 0 123 

10 87 0 180 
1 1  93 0 253 
12 84 0 43 3 
13 108 0 81 1 
14 131 0 3 071 
15 310 0 685 655 

3.4.1. Trains. First we note that entropic repulsion accounts for the strong predisposi- 
tion against trains; desorbed configurations in the form of loops and tails, particularly 
the latter, account almost entirely for the observed chain conformations (table 1, figure 
6(b, c ) ) ,  in good agreement with the experimental work of Cosgrove et a1 (1983) and 
observed in a number of lattice-based analyses embodying weak or zero chain-plane 
attraction (e.g. La1 and Stepto 1977, Dickinson and La1 1980). Trains, if they do occur, 
are never more than one link in length (figure 6(a) )  regardless of chain length. The 
bound fraction of the sequence decreases rapidly with increasing N (figure 6(b, c ) ) ;  
attrition in chain conformation with adsorption of a single segment develops rapidly 
with chain length and the associated free energy penalty ensures a decreasing fraction 
of the sequence in the form of trains with increasing N. 
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Figure 6. ( a )  Mean component lengths as a function of chain length. The error bars 
indicate the 95% confidence intervals. Loops form primarily in denominations of maximal 
or minimal size, accounting for the very large confidence interval for loop formation (table 
1).  - - -, 6 = 0 . 0 6 2 5 ~ ;  -, 5 = 0.007 28a. ( b )  Component fractions as a function of chain 
length, expressing percentage of chain in loop train and tail form. 5 = 0.007 28u. ( c )  
Component fractions as a function of chain length, expressing percentage of chain in loop, 
train and tail form. 5 = 0.06250: 



A Monte Carlo analysis of terminally attached polymer sequences 997 

An exponent representation of the form ( Itrain) - ( N  - 1)’’ suggests an asymptotic 
(N+m) value T ] - 0  (figure 4). As emphasised previously, the MC data are not 
susceptible to any conventional assessment of error as far as exponent estimates are 
concerned, based on relations of the form l(a, 6). However, the data presented in 
figure 4 are consistent with Roe’s (critical) value T] ,  = 0, determined on the basis of 
the divergent generalised partition function method (Roe 1965a, b) in which excluded 
volume is neglected. Roe identifies the critical condition as one for which a weak 
chain-plane attraction counters the entropic repulsion at the plane, yielding a zero 
excess free energy. 

3.4.2. Tails. Desorbed sequences in the form of loops and tails represent the preferred 
conformations at the boundary, particularly the latter (table 1) which account for more 
than 99% of the observed structure (figure 6(b)).  The configurational attrition associ- 
ated with returns to the plane, relative to the totally desorbed sequence, increases 
rapidly with chain length and accounts for the increasing predisposition for the 
formation of tails with increasing N. Clearly, theories which ignore the presence of 
tails would appear incapable of providing an adequate description of the configur- 
ational behaviour of finite length sequences (Simha et a1 1953). It is evident that a 
strong segment-boundary attractive interaction would be required to substantially 
modify the ratio of adsorbed to desorbed configurations. 

Fitting an exponent representation of the form (hai l )  - ( N  - 1)’ suggests a value 
6 - 1 (figure 4) for asymptotically long sequences, again consistent with Roe’s critical 
estimate 6, = 1.0. This is not a general result of course, and will depend upon adsorption 
energy (La1 and Stepto 1977). 

3.4.3. Loops. From table 1 we see that very short and very long loops are more probable 
than those of intermediate length, within a given sequence. This distribution of loop 
lengths is characteristic of all sequence lengths investigated. The return of an intermedi- 
ate segment to the plane effects a relatively greater attrition of chain conformations 
than does a return at either end of the sequence. Given the overall predisposition 
towards the formation of tails, short loops are favoured with respect to those of larger 
denomination. One consequence of this bimodal distribution of loop lengths is that 
the variance in (Zloop) is enormous (figure 6 ( a ) )  making any definitive assessment of 
dependence upon chain length difficult. However, the progressive predisposition 
towards shorter rather than longer loops with increasing chain length is nevertheless 
clearly apparent. An exponent representation of the form ( l l oop)  - ( N  - 1)‘ suggests 
an exponent 5-0.52 for asymptotically long sequences (figure 4), again in good 
agreement with Roe’s critical value 6, = 0.5. 

3.4.4. Thickness of the boundary layer. The mean thickness of the boundary layer ( z I N )  
as a function of chain length was also determined, and is found to increase slowly 
with N (figure 7) which we interpret as evidence of lateral spreading of the sequence 
with increasing chain length. The mean square normal separation ( z : ~ )  supports this 
conclusion. For an isolated, spherically symmetric sequence (z:,,,) = ( R ; N ) .  However, 
we find that ( z : ~ )  is substantially less than ( R i N )  for a terminally attached chain-a 
result consistent with lateral spreading of desorbed sequences rather than normal 
growth away from the boundary. 
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N-1  

Figure 7. The mean thickness (2, N )  of boundary layer as a function of chain length. 

An analysis of the mean normal span ( z n )  on the basis of 

( z n ) - n ”  
and 

vn = i n ( ( z n + J / ( z n ) -  1) 

suggests v,- 0.67 (figure 4). Unfortunately no exact enumeration data are available 
for comparison. However, Chan et al (1975) report v, = 0.5 for a terminally attached 
sequence, weakly attracted to a rigid plane. This result, determined on the basis of a 
divergent partition function analysis, neglects excluded volume, in which case a 
somewhat stronger n dependence might be anticipated, particularly in the absence of 
chain-plane attraction. 

3.4.5. Efect of contact zone thickness I .  Two choices of contact zone thickness were 
chosen, 5 = 0 . 0 0 7 2 8 ~ ~  and O.O625u, within which a segment centre was considered to 
be adsorbed to the plane. Whilst the qualitative dependence of the loop, train and 
tail fractions upon N was relatively insensitive to the choice of 5, the quantitative 
effects arising from the reclassification were considerable. This may be directly 
attributed to the short-range form of p ( z l N )  which increases rapidly over the range 
O <  z <  1 .  The bound fraction (trains) increases by an order of magnitude (figures 
6(b, c ) ) ,  although (Itrain) remains essentially unmodified. With this relaxation in the 
adsorption criterion, configurations previously classified as tails are now reclassified 
as loops, increasing the loop fraction by -60%. This reclassification is, of course, at 
the expense of tails which show a far less dramatic dependence upon the choice of 5. 

On the basis of MC analyses of terminally attached continuum sequences, Higuchi 
et a1 (1983) have determined the 5 dependence of the various boundary structures 
discussed above. They find that resolution into loop, train and tail components is 
sensitively dependent upon the choice of 5. However, the stringent criteria for adsorp- 
tion adopted here ( I =  0.0625,0.00728) provide an unequivocal resolution of the various 
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boundary structures. As Higuchi et a1 observe, however, under conditions of strong 
chain-plane attraction the development of relatively thick boundary layers introduces 
ambiguity into the choice of and the associated resolution of loops, trains and tails. 
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